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Talk Overview:

� Background � XIFS Studies of Dynamics/Kinetics

� Background � CuPd Long-Period Superlattice Alloys

� XIFS Study of Domain Coarsening

� Final Thoughts 



XIFS Studies of Equilibrium Fluctuation Dynamics

Analogous to Dynamic Light Scattering (DLS)
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If fluctuations are Gaussian, this is related to 
the 1st Order Correlation Function 
(Intermediate Scattering Function):
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The 1st Order Correlation Function is often calculated by 
theory/simulation and can be related to a linear response 

susceptibility through the fluctuation-dissipation theorem.



XIFS Studies of Non-Equilibrium 
Dynamics/Kinetics

How do we quantiatively understand speckle evolution in a non-equilibrium 
system?

I(q,t�)I(q,t�+t) is no longer stationary in t�  !!

If the time scale for �kinetic� evolution τk is much longer than the time 

scale for �fluctuation� evolution τf then we could calculate a slowly 
changing correlation function that might be interpretable:
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BUT in general τk and τf are comparable because the kinetic 
evolution is closely connected to the timescales of fluctuation 
dynamics



XIFS Studies of Non-Equilibrium 
Dynamics/Kinetics

No general approach to understanding speckle fluctuations in 
nonequilibrium systems!

Therefore begin by looking at �well understood� case of late stage 
domain coarsening kinetics in metallic alloys.

McGill and LTPCM Groups:
Brown et al. PRE 56, 6601 (1997); PRE 
60, 5151 (1999); Malik et al. PRL 81, 
5832 (1998); Livet et al. PRE 63, 036108 
(2001)

Two-Time Correlation Function:

Compare with fundamental theoretical 
predictions and simulation
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Stadler and coworkers:
PRB 68, 1801001 (2003)
PRB 69,  224301 (2004) 
�Fluctuation Analysis�

Long-term correlations α > 0.5
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Late-Stage Coarsening Kinetics in Metallic Alloys

Average domain size grows to decrease interfacial energy 
associated with domain boundaries

X. Flament

Dissertation
Université de Cergy-

Pontoise (2000)

MC simulation of 
coarsening kinetics 
in a system with 4 
degenerate states

Dynamic Scaling:

α = 2 conserved order parameter (atomic ordering)

α = 3 nonconserved order parameter (phase separation){α/1td ∝
α/1
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Theory/Simulation: Evolution of the 
Two-Time Correlation Function

Brown, Rikvold, Sutton & Grant: PRE 56, 6601 (1997); PRE 60, 5151 (1999)

Two-time correlation function:
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Langevin calculation and simulation          

→ Persistent speckles                      
→ New dynamic scaling

Scaling variable:  x = q2t

Two Regimes of Correlation Decay:

xm small: xτ ~ xm

xm large: xτ ~ xm
1/2

Decay of C(q,t1,t2):

C(q,∆t,tm)
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Long-Period Superlattice (LPS) Alloy: CuxPd1-x

LPS Alloys: Periodic modulation between different L12 antiphase domains

Pd Rapid QuenchCu

M cells in each antiphase domainL12 ordering

Traditional time-resolved x-ray scattering kinetics study: 
Wang, Mainville, Ludwig, Flament, Finel and Caudron; PRB, in press.



Scattering from LPS Alloy

MC Simulations of 
LPS Ordering 

Kinetics

X. Flament

Dissertation
Université de Cergy-

Pontoise (2000)
Satellite Peak (0 qs 1)

qs = 1/2M

L12 Superlattice Peak (0 0 1)



Data Collection

ESRF Beamline ID-10A Troïka: Be lens focussing

� Si(111) monochromator � 8.07 keV, δE/E ≅ 1.4 x 10-4 FWHM
Gaussian wavepacket exp[-x2/ξl

2] 
→ longitudinal coherence length ξl ≈ λ2/2∆λ ≈ 0.5 µm

� Troïka source size of 900 µm horizontal by 23 µm vertical
transverse coherence area of 6 x 220 µm (H x V FWHM) 

� 12 µm pinhole located 0.23m in front of sample

� 20 µm x 20 µm guard slit, positioned halfway between pinhole and sample

1340 x 1300 20 µm Pixel Direct-Illumination Deep-Depletion CCD 
(Princeton Instruments)

� Sample-detector distance of 2.3m gives speckle size of 36 µm (FWHM)

� Detector used in a photon-counting mode 

[F. Livet et al., Nucl. Instrum. Meth. Phys. Res. A 451, 596 (2000)].



Experiment

� Disordered sample rapidly quenched into ordering 
region at 435 °C

� Two peaks examined to study evolution of order �
Superlattice (001) sensitive to L12 order
Satellite (0 q0 1) sensitive to modulated order

� For each quench 700 frames of data collected with 
exposure time of 50 sec and readout time of 
approximately 1.6 sec (36120 sec total time)

� Region of peak examined limited by size of CCD 
chip



Onset of Coarsening � Evolution of 
Superlattice Peak Widths

Coarsening:        w2 = a(t-t0)
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Simple 2-d Gaussian Fits: Difficult to evaluate 
precisely the onset of coarsening behavior



Onset of Coarsening � Dynamic Scaling

Stronger requirement � Dynamic Scaling of I(q,t)
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Good I(q,t) scaling is observed after 5000-8000 sec



Qualitative View of Speckle Evolution

Fram
e 
Num
ber

Pixel

Frame Number

Persistent speckles develop as predicted by theory



Peak Shifts

Peak positions shift during experiment by up to 0.003 reciprocal lattice units

Peaks shift � Speckles don�t !
A. Fluerasu, M. Sutton, E.M. Dufresne, PRL 94, 055501 (2005): 

Lattice Distortions at Antiphase Domain Boundaries?



Transverse Coherence

ID10A Source Size: 900 µm horizontal by 23 µm vertical         
ξt ∼ λR/(2s) → coherence area 6 x 220 µm (H x V FWHM) 

12 µm x 12 µm pinhole

IMMY/XOR-CAT Coherence calculator: http://8id.xor.aps.anl.gov/UserInfo/Analysis/

→ coherence factor βtheory ≈ 0.3

1
),(

),(),(
2

2

−
><

><−><
=

tqI
tqItqIβSAXS from aerosyl to check this result: 

β ≅ 0.2



Longitudinal Coherence � Calculated

Monochromator 8.07 keV, δE/E ≅ 1.4 x 10-4 FWHM 
Gaussian wavepacket exp[-x2/ξl

2] 
→ longitudinal coherence length ξl ≈ λ2/2∆λ ≈ 0.5 µm

Absorption Length: µ-1 ≈ 10 µm

Bragg case geometry: θ ≈ 12°

Typical path length difference δr = 2µ-1sin2θ ≈ 0.86 µm

Try to calculate effect of finite longitudinal coherence in symmetric Bragg case geometry:
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Scattered field:

≈ 0.46

So we might expect βscatt ≈ 0.46*βtrans≈ 0.09 



Longitudinal Coherence � Measured

Two ways to calculate βscatt:
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Smaller than expected by factor of 2

Normalize C(q,t1,t2) to remove effect of imperfect coherence:
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Normalized Two-Time Correlation 
Function
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Sudden Shifts in Speckle Pattern on the 
Detector

To first approximation, small changes in incident beam angle shift the entire speckle 
pattern on the detector if the change in the angle is perpendicular to the scattering plane.  
If the change in angle is not perpendicular to the scattering plane, then it is still true that 
beam motion causes a shift if the speckles are significantly longer in the radial direction 
than in the transverse direction.  Here the penetration depth into the sample (µ-1sinθ)/2 ∼
1 µm << beam footprint on the sample 12 µm/sinθ ∼ 58 µm.

We shifted each pattern slightly to maximize overlap with an arbitrary pattern in the 
middle of the data set.  



�Corrected� Normalized Two-Time 
Correlation Function
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Normalized Two-Time Correlation Function
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Cnorm(q=0.0126 nm-1,t1,t2) for the superlattice peak



Evolution of Normalized 2-time Correlation Function
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Cnorm(q=0.0126 nm-1,t1,t2) for the 
satellite peak in the detector x-
direction at three times t1 near the 
beginning, middle and end of the 
experiment. 

Cnorm(q,t1,t2) at t1 = 17286 s for the 
superlattice (sup) and satellite (sat) 
peaks in the detector x- and y-
directions. 

No dependence on peak (satellite vs. L12 superlattice) or direction is observed



Normalized Two-Time Correlation 
Function as a Function of ∆t
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Decay Time τ of Normalized Two-
Time Correlation Function
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Scaling of Normalized Two-Time 
Correlation Function Decay
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As predicted by the 
Langevin theory and 
simulations  of Brown et 
al. for small x = q2t:

xτ ~ xm

i.e. the speckles�
persistence increases 
linearly with mean 
coarsening time.



Conclusions � Things We May 
Understand�

Despite complexity of LPS phase, C(q,t1,t2) appears to follow 
expectations from theory/simulation of a Langevin equation with a 
nonconserved order parameter:

� Decay of C(q,t1,t2) can be fit well with theoretical lineshape

� C(q,t1,t2) independent of direction, peak (L12 vs. modulated)

� Speckle is Persistent with xτ ~ xm



Conclusions � Things We May Not 
[Yet] Understand�

1) Although xτ ~ xm in agreement with theory/simulation, the dimensionless slope (ratio) 
between them is much smaller than expected �

0.5 (experiment) vs. ~ 1.4 (theory)

Similar situation seen in Cu3Au: A. Fluerasu, et al., PRL 94, 055501 (2005) 

Our own MC Ising model simulations using spin-exchange agree well with Langevin 
theory.

Why the difference between experiment and theory?

2) Significant peak motion without speckle motion observed �

Inhomogeneous strain release at antiphase boundaries?



Normalized Two-Time Correlation 
Function
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