Imaging Magnetic Domains by X-ray Spectro-Holography

Stefan Eisebitt

BESSY

O. Hellwig M. Lörgen W. Eberhardt

J. Lüning W. F. Schlotter J. Stöhr

HITACHI Inspire the Next

E.E. Fullerton

Lensless Imaging of Magnetic Structures

Coherent X-rays

Current x-ray sources are not intrinsically coherent

Synchrotron Radiation

Synchrotron is a chaotic source, but:

Undulator source at 3rd generation synchrotron allows to extract a high coherent flux

Photons in coherence volume \sim Brightness $\cdot \lambda^3$

Magnetic Labyrinth Nanostructures - CoPt

Sample: O. Hellwig

SiN_x / Pt (24 nm) / [Co (1.2 nm) / Pt (0.7 nm)]₅₀ / Pt (1.5 nm)

perpendicular anisotropy

magnetic storage media

S. Eisebitt, Coherence 2005, Porquerolles June '05

MFM, top view

 $5\ \mu m\ x\ 5\ \mu m$

Contrast mechanism: Circular magnetic dichroism

Resonant Magnetic Scattering

J. P. Hannon, G. T. Trammell, M. Blume, D. Gibbs, Phys. Rev. Lett 61, 1245 (1988)

in our geometry

Magnetic Small Angle Scattering

element specific

Polarization Effects: Switch Interference On / Off

S. Eisebitt *et al.*, Phys. Rev. B **68**, 104419 (2003) A. Rahmim *et al.*, Phys. Rev. B **65**, 235421 (2002)

Solving the Phase Problem

(a) Iterative phase retrieval: ? oversampling phasing Image of Object

(b) Encode the phase: holography

Iterative Phase Retrieval

from coherent x-ray scattering alone

Sample

Reconstruction

Coherent Scattering

Patterson map = autocorrelation

see S. Marchesini et al, PRB 68 140101(R) (2003)

S. Eisebitt et al. Appl. Phys. Lett., 84, 3373 (2004)

Iterative Phase Retrieval: Magnetic Domains

magnetic sample: complex scattering factor

M. Lörgen et al, BESSY Highlights 2003 (2004)

- resolution only limited by momentum transfer
- is the solution unique?
 - S. Eisebitt, Coherence 2005, Porquerolles June '05

Holography

- state of the art resolution: 60 nm: FT I. McNulty et al. Science 256, 1009 (1992) G S. Lindaas et al. J. Opt. Soc. Am. A 13, 1788 (1996)

X-ray Fourier Transform Holography Mask

Fourier Transform Holography at λ =1.6 nm

Mask Approach

Dichroic Hologram

CCD Detector Image

Right circular polarized

Difference (RCP – LCP)

500 sec total exposure

log z-scale

Digital Image Reconstruction

FFT = Patterson Map

Convolution theorem applied to diffraction: FT(diffraction) = Autocorrelation (Object)

FT (a \otimes b) = FT(a) · FT(b) (a \otimes a) = FT⁻¹ {FT(a) · FT(a)}

a FT(a) · FT(a) real space object diffraction intensity

X-Ray Spectro-Holography

500 sec

S. Eisebitt, Coherence 2005, Porquerolles June '05

RCP-LCP

lsittgead??

-ray holography

0

international weekly journal of science

nature.com/nature

nside this week nation

Lensless imaging at the nanoscale

The 'Halloween storm' How the Sun plays its tricks

Protein transport Escape from the nucleus

Duck-billed platypus Curiouser and curiouser

Locusts over Africa Time for biologcal control? Nature 432, 885-888 16. Dec.2004

W.F. Schlotter, S. Eisebitt, O. Hellwig, J. Lüning (unpublished)

Integrated Sample Structure

Patterned with Focused Ion Beam

W.F. Schlotter

Magnetic Data Storage

Hard Disks: Storage Density

S. Eisebitt, Coherence 2005, Porquerolles June '05

Media Development

S. Eisebitt, Coherence 2005, Porquerolles June '05

IBM / Hitachi

Reversal of a CoPt multilayer

Reversal of a CoPt multilayer

perpendicular

2 min / image 60 nm Co

Perpendicular Hard/Soft Layer System

[Co(0.4nm) Pt(0.7nm)]₁₅ 20 mTorr effect from the hard layer dipole fields hard layer of the hard layer on the reversal Ru(50) of the soft layer [Co(0.4nm) $Ni(1nm)]_{8}$ soft layer Co(0.4nm) 3 mTorr 1.0-— 8xNi(10) soft layer Ru (50) spacer Kerr signal 0.5 -0.0 Pt(200) -0.5 -1.0 8 10 12 -12 -10 -8 -2 0 2 -6 -4 6 soft layer reversal, Ni edge H [kOe]

Pt(20)

Induced Nucleation

Pt(20)

Future: Patterned Magnetic Media

Ø 110 nm

Nature Materials 4, 203 (2005) S. Eisebitt, Coherence 2005, Porquerolles June '05

Flipping the bits in an applied field

O 110 nm

O. Hellwig, S. Eisebitt, W.F. Schlotter, J. Lüning (unpublished)

Recent Progress in Spectro-Holography

Optical Elements

X-Ray Spectro-Holography

- Holographic Image
- Magnetic Profile
- 50 nm resolution
- Subsequent phase retrieval possible
- Mask approach
 - simple
 - stable
 - no focussing
 - characterize reference
 - sample environment
- Free Electron Laser

BESSYFEL

Vision: Femtosecond Snapshots

Free Electron X-Ray Laser

SLAC DESY BESSY

- - -

- coherent flux sufficient to image with a single pulse
- pulse duration 10-100 fs
 - holography & oversampling phasing benefit from increased coherence

Germany: Complementary Free Electron Lasers

VUV and Soft X-Ray BESSY FEL

Function

Structure

X-Ray

TESLA X-FEL

20 eV to 1 keV <20 fs controlled 1 kHz (1-25 pulses) Photon Energy Pulse Length Repetition Rate 500 eV to 15 keV <100 fs 5 Hz (7200 pulses)

High Gain Harmonic Generation

L.H. Yu et al., BNL, FEL Price 2003

Single Shot Experiments

Single Nano-objects
Pump-Probe

Non-repetitive Dynamics

X-Ray: spatial resolution, atomic / chemical / magnetic contrast

PostDoc Position: EU Marie Curie ToK Program

Soft X-ray coherent scattering & sXPCS

eisebitt@bessy.de